Real-world Targeted Treatment Based on Whole Genome Sequencing Difficult in Pancreatic Cancer

Findings can help inform changes in healthcare delivery to enable precision medicine in practice

PHILADELPHIA — Although advances in whole genome sequencing have made it possible to identify unique druggable alterations in individual tumors, real-world application of this technology in diseases such as pancreatic cancer remains a challenge, according to research from the Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) trial presented here at the AACR Annual Meeting 2015, April 18-22.

This study is being simultaneously published in Clinical Cancer Research, a journal of the American Association for Cancer Research.

The IMPaCT trial was designed to use whole genome sequencing of pancreatic cancer to identify patients with actionable changes in their tumors that could be treated with currently available therapies.

“Our data highlight just how difficult it is to do this sort of trial in a poor-prognosis cancer like pancreatic cancer,” said Lorraine Chantrill, MBBS, FRACP, medical oncology staff specialist at Macarthur Cancer Therapy Centre in Campbelltown Hospital, and a researcher at The Kinghorn Cancer Centre, Garvan Institute of Medical Research, both in Australia. “We know that, unfortunately, only about 15 percent of the population had molecular targets eligible for this type of treatment and that it has been very difficult to do the molecular analysis quickly enough before patients get too sick to be treated.”

Initially, the single-arm trial screened patients for three molecular targets: HER2 amplification, indicating treatment with trastuzumab/gemcitabine; KRAS wild-type, indicating treatment with erlotinib/gemcitabine; and DNA damage repair pathway defects, indicating treatment with platinum-based chemotherapy. While patients waited for the molecular analysis results, they were permitted to start standard-of-care chemotherapy treatment.

Patients in the initial cohort of the trial underwent disease resection, and 70 percent of patients eventually had disease recurrence. The researchers began collecting tissue for analysis in 2009;
however, by the time the first trial site opened in April 2013, only eight patients with eligible molecular targets remained alive.

The researchers altered the trial design to conduct real-time screening for mutations in patients diagnosed with untreated metastatic disease. The screened mutations were expanded to include KRAS, BRCA1, BRCA2, PALB2, and ATM.

To date, the researchers have screened 93 tumors in 18 months and have found 22 patients with relevant molecular targets. The average time from biopsy to delivery of the molecular results was 21 days. “We have found that a non-randomized trial is more appealing to patients in this situation,” Chantrill said.

“It is important for the public to know how hard it is to put into practice molecularly guided treatment within the constraints of our health service delivery,” Chantrill added. “We hope that our work will help others who are planning similar studies.” Senior author of the study, Andrew Biankin, MBBS, PhD, director of the Wolfson Wohl Cancer Research Centre in the University of Glasgow, United Kingdom, said, “It highlights how current healthcare systems are not well-aligned for a more personalized approach to therapy. Lessons learnt here could inform appropriate changes in healthcare systems to enable precision medicine in practice.”

This study was funded by the National Health and Medical Research Council of Australia, the Cancer Council NSW, the Avner Nahmani Pancreatic Cancer Foundation, the Cancer Institute NSW, the R.T. Hall Trust, the Petre Foundation, the Philip Hemstritch Foundation, and Sydney Catalyst, University of Sydney. Chantrill has served on advisory boards of Specialised Therapeutics Australia and Roche Australia. Biankin declares no conflicts of interest.

Follow the AACR Annual Meeting 2015 on Twitter: #AACR15

#

Follow us: Cancer Research Catalyst http://blog.aacr.org; Twitter @AACR; and Facebook http://www.facebook.com/aacr.org

For AACR information, visit Fast Facts.

About the American Association for Cancer Research
Founded in 1907, the American Association for Cancer Research (AACR) is the world’s oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 35,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in 101 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 25 conferences and educational workshops, the largest of which is the AACR Annual Meeting with over
Abstract Number: 8332

Title: Precision Medicine for Advanced Pancreas Cancer: The Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial

Author Block: Lorraine A. Chantrill1,2,3, Adnan M. Nagrial1,3,4, Clare Watson1, Amber L. Johns1, Mona Marty-Smith1, Skye Simpson1, Scott Mead1,5, Marc D. Jones6, Jaswinder S. Samra7,8, Anthony J. Gill9, Nicole Watson9, Venessa T. Chin1,3, Jeremy L. Humphris1, Angela Chou1,10, Belinda Brown10, Adrienne Morey10, Marina Pajic1, Sean M. Grimmond6, David K. Chang6,11,12,13, David Thomas1,3, Lucille Sebastian14, Katrin Sjoquist3,14, Sonia Yip3,14, Nick Pavlakis15, Ray Asghari16, Sandra Harvey16, Peter Grimison3,17, John Simes3,14,17, and Andrew V. Biankin1,6,11,12,13, on behalf of the Australian Pancreatic Cancer Genome Initiative (APGI) and the Individualized Molecular Pancreatic Cancer Therapy (IMPaCT) Trial Management Committee of the Australasian Gastrointestinal Trials Group (AGITG)

Abstract Body:

Purpose: Personalized medicine strategies using genomic profiling are particularly pertinent for pancreas cancer. The Individualized molecular Pancreatic Cancer Therapy (IMPaCT) trial was initially designed to exploit results from genome sequencing of pancreatic cancer under the auspices of the International Cancer Genome Consortium (ICGC) in Australia. Sequencing revealed small subsets of patients with aberrations in their tumor genome that could be targeted with currently available therapies.

Experimental Design: The pilot stage of the IMPaCT trial assessed the feasibility of acquiring suitable tumor specimens for molecular analysis and returning high-quality actionable genomic data within a clinically acceptable timeframe. We screened for three molecular targets: HER2 amplification; KRAS wild-type; and mutations in DNA damage repair pathways (BRCA1, BRCA2, PALB2, ATM).

Results: Tumor biopsy and archived tumor samples were collected from 93 patients and 76 were screened. To date 22 candidate cases have been identified: 14 KRAS wild-type, 5 cases of HER2 amplification, 2 mutations in BRCA2, and 1 ATM mutation. Median time from consent to the return of validated results was 21.5 days. An inability to obtain a biopsy or insufficient tumor content in the available specimen were common reasons for patient exclusion from molecular analysis while deteriorating performance status prohibited a number of patients from proceeding in the study.

Conclusions: Documenting the feasibility of acquiring and screening biospecimens for actionable molecular targets in real time will aid other groups embarking on similar trials. Key elements include the need to better prescreen patients, screen more patients, and offer more attractive clinical trial options.