Combining Chk1 Inhibition With Standard Dose Gemcitabine
May be Safe and Effective

PHILADELPHIA — Adding the investigational agent GDC-0425, which blocks the function of a protein called checkpoint kinase 1 (Chk1), to standard doses of the chemotherapy drug gemcitabine, was safe and yielded responses in patients with a variety of cancer types, including triple-negative breast cancer, melanoma, and cancer of unknown primary, according to data from a phase I clinical trial presented at the AACR Annual Meeting 2015, held April 18-22.

“Gemcitabine is a chemotherapy agent that works by damaging the DNA of cancer cells while they are dividing to form more cancer cells,” said Jeffrey R. Infante, MD, director of the drug development program at Sarah Cannon Research Institute in Nashville, Tennessee. “Sometimes cancer cells pause during the process of cell division and the cell has time to repair the DNA damage caused by gemcitabine, making the drug less effective. Chk1 is a protein kinase that can trigger this pause, and the idea underpinning our trial was that blocking Chk1 with GDC-0425 might prevent cancer cells from having time to repair gemcitabine-damaged DNA.

“We were excited to find that we could safely combine GDC-0425 with the standard 1000 milligram per m² dose of gemcitabine because we had been concerned that this combination might not be tolerable,” continued Infante. “We are also encouraged to see responses in patients with a variety of cancer types. The results have given us a good platform for moving forward with Chk1 inhibitor/gemcitabine combination therapy for further study.”

Infante and colleagues enrolled 40 patients with a variety of cancer types in the dose-escalation clinical trial, including 10 patients with breast cancer, five patients with non–small cell lung cancer, and three patients each with cancer of unknown primary and melanoma. They found that the maximum-tolerated dose of the combination was 60 milligrams of GDC-0425 with 1000 milligram per m² gemcitabine. The most frequent adverse events were nausea, anemia, neutropenia, vomiting, fatigue, fever, and thrombocytopenia.

Among the 40 patients on the trial, three experienced partial responses to the drug combination. One patient with triple-negative breast cancer had a partial response that lasted more than 10 months, and two patients, one with melanoma and one with cancer of unknown primary, had partial responses that lasted more than 7.5 months.
Infante said that the researchers analyzed archival tumor samples from the patients enrolled on the clinical trial for mutations in the gene TP53, which is the gene most frequently mutated in human cancers. “The idea is that TP53 mutations may make a tumor more responsive to Chk1 inhibitor/gemcitabine combination therapy,” he said. “Unfortunately, we did not have enough data from the dose escalation portion of the study to confirm whether TP53 mutations are a biomarker of response, but this is an important question that will need to be addressed in future trials.”

This study was funded by Genentech. Infante declares no personal conflicts of interest.

Follow the AACR Annual Meeting 2015 on Twitter: #AACR15

###

Follow us: Cancer Research Catalyst http://blog.aacr.org; Twitter @AACR; and Facebook http://www.facebook.com/aacr.org

For AACR information, visit Fast Facts.

About the American Association for Cancer Research

Founded in 1907, the American Association for Cancer Research (AACR) is the world’s oldest and largest professional organization dedicated to advancing cancer research and its mission to prevent and cure cancer. AACR membership includes more than 35,000 laboratory, translational, and clinical researchers; population scientists; other health care professionals; and cancer advocates residing in 101 countries. The AACR marshals the full spectrum of expertise of the cancer community to accelerate progress in the prevention, biology, diagnosis, and treatment of cancer by annually convening more than 25 conferences and educational workshops, the largest of which is the AACR Annual Meeting with over 18,500 attendees. In addition, the AACR publishes eight prestigious, peer-reviewed scientific journals and a magazine for cancer survivors, patients, and their caregivers. The AACR funds meritorious research directly as well as in cooperation with numerous cancer organizations. As the Scientific Partner of Stand Up To Cancer, the AACR provides expert peer review, grants administration, and scientific oversight of team science and individual investigator grants in cancer research that have the potential for near-term patient benefit. The AACR actively communicates with legislators and other policymakers about the value of cancer research and related biomedical science in saving lives from cancer. For more information about the AACR, visit www.AACR.org.
Abstract Body:

Background: Chk1 acts at S and G2/M checkpoints to allow time for high-fidelity DNA replication and repair before cell cycle progression. Chk1 inhibition converts a transient genotoxic insult from chemotherapy into a cytotoxic event by overriding cell cycle arrest, allowing cells mitosis with DNA damage. GDC-0425 is an oral, selective Chk1 inhibitor. GDC-0425 enhances gem efficacy in tumor xenograft models. Greater chemopotentiation is observed in cancer cell lines lacking p53 activity.

Methods: A phase I dose-escalation trial (3+3+3 design) included pts with refractory solid tumors and ECOG performance status (PS) ≤ 1. Pts received a single dose of GDC-0425 on day 7 for PK evaluation followed by 21-day cycles of gem on Days 1 and 8 and GDC-0425 on Days 2 and 9 at gem (mg/m²) + GDC-0425 (mg) dose levels of 750 + 60, 1000 + 60, and 1000 + 80. p53 was evaluated in archival tumor tissue by gene sequencing, immunohistochemistry, and gene expression signature. Safety, pharmacokinetics (PK), pharmacodynamics, and tumor response were investigated.

Results: Of 40 pts treated, 55% were female, median age was 56 years (range 33-82), and 68% had ECOG PS 0. Most common tumor types were breast (n=10), non-small cell lung (n=5), and cancer of unknown primary (CUP, n=4). Maximum concentrations of GDC-0425 were achieved within 4 hours of dosing and its half-life was approximately 16 hours. Target exposures associated with checkpoint abrogation and anti-tumor activity in preclinical models were exceeded at 60 mg. No PK interaction was observed with GDC-0425 and gem. Dose escalation was halted at GDC-0425 80 mg with gem 1000 mg/m² as 3 of 6 pts experienced Grade 4 thrombocytopenia as a dose-limiting toxicity (DLT); 1 pt also had Grade 3 neutropenia that delayed Cycle 2 (DLT). Blood counts recovered with treatment interruption and supportive care. The maximum tolerated dose of GDC-0425 was 60 mg with gem 1000 mg/m². The most frequent adverse events (AEs) (all grades) related to GDC-0425 and/or gem were nausea (48%); anemia, neutropenia, vomiting (45% each); fatigue (43%); pyrexia (40%); and thrombocytopenia (35%). Serious AEs related to GDC-0425 and/or gem occurred in 8 pts: neutropenia and thrombocytopenia (n=2 each); leukopenia, ALT/AST/GGT increased, pyrexia, rash, dyspnea, gastric ulcer, and gastroenteritis (n=1 each). Median number of administered cycles was 3.5 (range 1-14). There were 3 partial responses in pts with triple-negative breast cancer (TNBC, TP53 mutated), melanoma, and CUP (n=1 each).

Conclusions: It is safe and feasible to administer GDC-0425 with a standard dose of gem. At the doses assessed, bone marrow suppression is common but manageable and exposures exceed those predicted by preclinical models to inhibit Chk1. Clinical activity was observed, including 1 patient with TP53 mutated TNBC.