Keliber – Lithium from Europe for future energy solutions

Battery Supply Chain Europe / Düsseldorf
March 13, 2018
Disclaimer

This document will be used by Keliber Oy for supporting additional information like www.keliber.fi and oral presentation. Therefore, this document is incomplete without the oral explanations, comments and supporting instruments that were submitted during the referred presentation. To the extent permitted by law, no representation or warranty is given, express or implied, as to the accuracy of the information contained in this document.

Some of the statements made in this document contain forward-looking statements. To the extent permitted by law, no representation or warranty is given, and nothing in this document or any other information made available during the oral presentation should not be relied upon as a promise or representation as to the future condition of Keliber’s Business.
Global demand and production of lithium
Increase in demand for lithium

Rechargeable battery sector driver for growth

- Increasing global demand driven by the rechargeable battery sector, which is forecast to register 23.9% pa growth through to 2031
- Other markets for lithium are also forecasted to provide areas of growth (ceramics and glass-ceramics, polymers, metallurgical powders)
- Annual global demand is forecasted to grow from 197,200 tons in 2016 to 1,008,900 tons in 2026 and 2,231,000 tons in 2031

Source: Roskill Consulting Group Ltd, 2017
Increase in demand for lithium
Price forecast for battery-grade lithium carbonate

- Lithium carbonate prices started to rise in Chinese spot market in H2 2015
- Contract pricing started to rise in China and elsewhere in Asia in 2016 and have continued to rise worldwide in 2017
- US$10 000/t is expected to be the new floor in the base-case scenario for battery-grade lithium carbonate

Figure 35: Average annual price forecast for battery-grade lithium carbonate, 2000-2031 (US$/t CIF Asia)

Source: Roskill Consulting Group Ltd, 2017
Increase in demand for lithium
Towards a more mobile and sustainable world

Increasing demand for lithium-ion batteries

- mobile electronics
- portable hand tools
- hybrid and electric vehicles
- stationary grid batteries
- stationary home batteries

Estimated lithium requirement in batteries

<table>
<thead>
<tr>
<th>Device</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile phone</td>
<td>1 – 3 g</td>
</tr>
<tr>
<td>Smartphone</td>
<td>2 – 3 g</td>
</tr>
<tr>
<td>Tablet</td>
<td>20 – 30 g</td>
</tr>
<tr>
<td>Laptop</td>
<td>30 – 40 g</td>
</tr>
<tr>
<td>Power tool</td>
<td>40 – 60 g</td>
</tr>
<tr>
<td>Hybrid vehicle – Plug-in</td>
<td>1.6 – 12 kg</td>
</tr>
<tr>
<td>Hybrid vehicle</td>
<td></td>
</tr>
<tr>
<td>Electric car</td>
<td>15 – 50 kg</td>
</tr>
</tbody>
</table>

Source: IM Research, FMC Lithium

Global megatrend
Global electrification of transportation with continuing political and regulative support accelerate investment in the lithium value chain
Increase in demand for lithium
Other metals in lithium-ion batteries

Global megatrend increases the demand also for other metals used in lithium-ion cathodes

Source: https://electrek.co/2016/11/01/breakdown-raw-materials-tesla-batteries-possible-bottleneck/
New lithium battery projects have been announced in Europe by SDI Samsung (Hungary), Daimler (Germany), Nissan (UK), Northvolt (Sweden), LG (Poland) and Tesla (location TBD).
Global mine production of lithium

In 2016 mine production of lithium totalled 216,740 LCE tons

- 20% increase in production compared to 2015
- Mine production of lithium from hard rock sources growing
- Keliber first Company to produce battery grade lithium carbonate from own ore reserves in Europe

Source: Roskill Consulting Group Ltd, 2017
 Keliber as a European producer

Key strengths

• Definitive Feasibility Study on-going – project is in excellent development phase for the global, growing markets

• Geographical location offers stable regulatory environment and excellent infrastructure with a strong existing logistics chain

• Selected production process technology secures supply reliability, high-quality end-product and environmentally sound operations

• High potential for growing mineral resources and ore reserves in the future

• Chosen strategy enables optimization of production and gives a strong position in the lithium value chain

Lithium deposits (Lithium minerals, Brines) Primary products (e.g. lithium carbonate, lithium hydroxide) Secondary products (e.g. Metallic lithium, Butyllithium) Applications: Li-ion batteries, Lithium greases, Air conditioning etc.
Growing resources and high exploration potential
Development of mineral resources

Sufficient for production of 9,000 tons of lithium carbonate per annum for +10 years

Mineral Resources (0.5 % Li2O cut-off)

<table>
<thead>
<tr>
<th>Date</th>
<th>Tonnage (Ton)</th>
<th>Li2O %</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 2012</td>
<td>1,590,000</td>
<td>1.15</td>
</tr>
<tr>
<td>September 2013</td>
<td>3,330,000</td>
<td>1.19</td>
</tr>
<tr>
<td>November 2014</td>
<td>5,184,000</td>
<td>1.24</td>
</tr>
<tr>
<td>March 2016</td>
<td>5,981,000</td>
<td>1.26</td>
</tr>
<tr>
<td>June 2017</td>
<td>8,065,000</td>
<td>1.19</td>
</tr>
</tbody>
</table>

Estimates prepared by Competent Persons in accordance with 2012 JORC code
Excellent exploration potential
One of the most significant lithium-bearing areas in Europe

- The lithium-rich province of Central Ostrobothnia covers over 500 sq. km
- A number of unexplored areas and excellent potential for further discoveries
- More than 1 400 erratic boulders in the area
From ore reserves to high quality product
Growing reserves

Latest estimate of mineral resources and ore reserves (million metric tonnes)

<table>
<thead>
<tr>
<th>Mt</th>
<th>Länttä</th>
<th>Syväjärvi</th>
<th>Outovesi</th>
<th>Rapasaari</th>
<th>Leviäkangas</th>
<th>Emmes</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESOURCES (June 2017)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>0.437</td>
<td>0.810</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.247</td>
</tr>
<tr>
<td>Indicated</td>
<td>0.910</td>
<td>1.160</td>
<td>0.283</td>
<td>3.456</td>
<td>0.190</td>
<td>0.820</td>
<td>6.818</td>
</tr>
<tr>
<td>Total</td>
<td>1.347</td>
<td>1.970</td>
<td>0.283</td>
<td>3.456</td>
<td>0.190</td>
<td>0.820</td>
<td>8.065</td>
</tr>
<tr>
<td>Ore grade (Li20 %)</td>
<td>1.06</td>
<td>1.24</td>
<td>1.43</td>
<td>1.15</td>
<td>1.14</td>
<td>1.40</td>
<td>1.19</td>
</tr>
<tr>
<td>Inferred</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.300</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RESERVES (March 2016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proven</td>
<td>0.470</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.470</td>
</tr>
<tr>
<td>Probable</td>
<td>0.540</td>
<td>1.480</td>
<td>0.250</td>
<td>1.750</td>
<td>-</td>
<td>-</td>
<td>4.020</td>
</tr>
<tr>
<td>Total</td>
<td>1.010</td>
<td>1.480</td>
<td>0.250</td>
<td>1.750</td>
<td>-</td>
<td>-</td>
<td>4.490</td>
</tr>
<tr>
<td>Ore grade (Li20 %)</td>
<td>0.94</td>
<td>1.19</td>
<td>1.20</td>
<td>1.09</td>
<td>-</td>
<td>-</td>
<td>1.10</td>
</tr>
</tbody>
</table>

Ore reserves are included in the Mineral Resources

Estimates prepared by Competent Persons in accordance with 2012 JORC code
Sizeable deposits

Significant upside potential

Rapasaari deposit
- consists of several pegmatite veins
- thickness of the veins varies from a few meters to tens of meters

Syväjärvi deposit
- consists of a main vein, which is divided into two separate pegmatite veins in places
- also parallel veins exist
- the maximum thickness of the main vein is about 30 meters

16 Note: Different colors in models used to distinguish separate spodumene pegmatite veins
Clean tech process
Efficient and environmentally sound production of high purity lithium carbonate

Soda leaching process developed together with Outotec

- Optical sorting
- Valuable by-products: Analcime sand and quartz-feldspar sand
- Concentrate grade optimization
- Flexible and environment-friendly soda leaching
- Tailings with no heavy metals nor acid generating minerals

17
Battery-grade lithium carbonate

9 000 tonnes per year

- Battery grade lithium carbonate (Li₂CO₃ min. 99.5 %) can be used in the manufacturing of batteries intended for
 - portable electronics,
 - electric tools,
 - electric means of transport
- Lithium carbonate from Länttä spodumene pegmatite ore test program
 - 99.61- 99.91 % Li₂CO₃
- Lithium carbonate from Syväjärvi spodumene pegmatite ore test program
 - 99.5 % Li₂CO₃
Potential by-products

Analcime sand and Quartz-feldspar sand

Analcime is a porous zeolite with a number of potential industrial uses

• an agent in the manufacture of cement, concrete, ceramic tiles and asphalt

Fine-grained quartz feldspar sand

• various uses as a filler, in for instance, asphalt coatings
Strong commitment to sustainability
Sustainable production process and proactive environmental actions

• Production process designed to be efficient and environmentally friendly simultaneously enabling superior quality end-product
• Optical sorting reduces the amount of waste rock going through the process
• Hydrometallurgical leaching is conducted with soda - an environmentally neutral alternative to sulphuric acid typically used in hard rock lithium production
• Production process designed to exploit the potential of the possible future by-products
• Proactive environmental actions e.g. protection of moor frogs and golden eagle
• Committed to transparent communication with surrounding community and society at large
• Keliber is a member of the Finnish Network for Sustainable Mining

Photo: Olli-Pekka Karlin
From a project to production
Way to production
Definitive feasibility study and preparation for production

<table>
<thead>
<tr>
<th>Tentative timeline for the next stages</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Engineering – Definite Feasibility Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permitting (environmental, mining and other)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detailed Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning and testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Production estimated to start 2020
Committed and skillfull management
Management team

Pertti Lamberg
• CEO since 2016
• Chair of the management team

Jaakko Vilponen
• Chief Financial Officer since 2016

Manu Myllynäki
• Chief Production Officer since 2017

Pentti Grönholm
• Chief Geologist since 2017

Olle Sirén
• COO since 2016
• Member of the board since 2016

Kari Wiikinkoski
• Environmental Manager since 2012

Jarmo Finnilä
• Communication and Administration Manager since 2013

KELIBER
Finnish majority ownership

Largest shareholders

- The company is owned by Finnish investment companies, private investors and the Norwegian Nordic Mining ASA

<table>
<thead>
<tr>
<th>Largest Shareholders</th>
<th>Total number of shares</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordic Mining ASA</td>
<td>239,044</td>
<td>22.0</td>
</tr>
<tr>
<td>Tesi Industrial Management Oy</td>
<td>190,662</td>
<td>17.6</td>
</tr>
<tr>
<td>Ab Mine Invest Oy</td>
<td>97,527</td>
<td>9.0</td>
</tr>
<tr>
<td>Keskinäinen Eläkevakuutusyhtiö Ilmarinen</td>
<td>70,929</td>
<td>6.5</td>
</tr>
<tr>
<td>Thominvest Oy</td>
<td>68,683</td>
<td>6.3</td>
</tr>
<tr>
<td>Jorma Takanen</td>
<td>63,123</td>
<td>5.8</td>
</tr>
<tr>
<td>Osuuskunta PPO</td>
<td>60,000</td>
<td>5.5</td>
</tr>
<tr>
<td>Case Invest Oy</td>
<td>59,547</td>
<td>5.5</td>
</tr>
<tr>
<td>Jussi Capital Oy</td>
<td>35,010</td>
<td>3.2</td>
</tr>
<tr>
<td>Eero Halonen</td>
<td>20,000</td>
<td>1.8</td>
</tr>
</tbody>
</table>
Current activity

• Additional process test work to reconfirm positive results in minerals processing tests
• Additional drilling to further increase of the resource base
• Preparation of the Environmental Impact Assessments (EIA)
• Preparations for the environmental and other permits
• Negotiations with potential clients to obtain end-product supply agreements
• Preparations related to the investment phase financing
• Finalizing the DFS report
Project in a nutshell

Lithium carbonate production with high value creation potential

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Innovative clean tech process</td>
</tr>
</tbody>
</table>
| | • Efficient and environmentally sound production
 • Potential for recovery of valuable by-products |
| **2** | **Production of high purity lithium carbonate** |
| | • 9 000 tonnes of lithium carbonate per annum for +10 years
 • Attractive market driven by Electric Vehicle industry |
| **3** | **Position in the lithium value chain** |
| | • Production strategy enables competitive advantage in the lithium value chain |
| **4** | **Growing resources** |
| | • Deposits located in one of the most significant lithium-bearing areas in Europe
 • Significant upside potential |